UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

COMPLEMENTARY PROBLEMS OF PHYSICAL CHEMISTRY

2018-19

LESSON 4

19. An ideal solution is comprised of two components, A and B. The vapour pressure of pure A is 125 mmHg at 25 ° C and B is a non-volatile component. A mixture with 1 g B and 20 g A has a vapor pressure of 110 mmHg at 25 ° C. What is the relationship between the molecular weights of A and B?

Solution: $M_A / M_B = 2.72$

20. An aerosol container* contains an (ideal) liquid propellant mixture of A and B in equilibrium with its vapour. If the composition of the liquid is $X_A^1 = 0,7$ and

 $X_{B}^{1} = 0,3$. Determine:

- a) Vapour pressure at 25 ° C and 50 ° C inside the container
- **b**) The composition of the vapour in equilibrium at 25 $^{\circ}$ C and 50 $^{\circ}$ C.
- c) When the mixture of propellants go outside where the pressure is 1 atm, what phase was found at both temperatures?

Data: $P_A^*(25) = 1.9 \cdot 105 \text{ N} \cdot \text{m}^{-2}$; $T_{b(A)}^\circ = 276.8 \text{ K}$; $\Delta \text{Hvap}(A) = 4863.12 \text{ cal} \cdot \text{mol}^{-1}$; $P_B^*(25) = 5.85 \cdot 105 \text{ N} \cdot \text{m}^{-2}$; $T_{b(B)}^\circ = 243.4 \text{ K}$; $\Delta \text{Hvap}(B) = 4615.63 \text{ cal} \cdot \text{mol}^{-1}$; $1 \text{ atm} = 101300 \text{ N} \cdot \text{m}^{-2}$; $R = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

* Fluorinated hydrocarbons as dichlorotetrafluoroethane (A) and chlorodifluoromethane (B) are used as propellants in aerosol pharmaceutical formulation (pressurized containers that contains the active component suspended in a propellant that can expel the product when the valve is opened)

Solution: a) P (25) = 308,500 N \cdot m⁻²; P (50) = 569 510 N \cdot m⁻²

b)
$$X_{A}^{v}(25^{\circ}C) = 0.43; X_{B}^{v}(25^{\circ}C) = 0.57; X_{A}^{v}(50^{\circ}C) = 0.44; X_{B}^{v}(50^{\circ}C) = 0.56$$

c) Vapour

21. At 90 $^{\circ}$ C, the vapour pressure of pure toluene and o-xylene are 400 mmHg and 150 mmHg, respectively. What is the composition of the mixture whose boiling point is 90 $^{\circ}$ C under a pressure of 0.5 atm? What is the composition of the vapour in equilibrium?

Assume ideal behaviour.

Solution: a) $x_{o-xilene}^{L} = 0.08$; **b)** $x_{o-xilene}^{V} = 0.032$

22. The following data are the vapour pressure of water and the molality of sucrose in aqueous solutions measured at 25 ° C. Check if the solvent satisfies Raoult's law. If not calculate solvent activity and activity coefficient.

m (sucrose) /(mol·Kg ⁻¹)	0.000	0.200	2.000
P / (mm Hg)	23.75	23.66	22.75

Solution: $m_{suc} = 0 \Rightarrow pure H_2O$; $m_{suc} = 0.200 \text{ m} \Rightarrow \text{ It follows Raoult's law;}$ $m_{suc} = 2.000 \text{ m} \Rightarrow \text{ It does not follow Raoult's law } (a_{I, water} = 0.9579; \gamma_{I, water} = 0.9924)$

- **23.**At 23 °C, a mixture of two components A and B with 74% moles of A is prepared. The total pressure is 303 mmHg with with 74% moles of A in the vapour. Determine:
 - a) the activity and activity coefficient of each component according to convention I.
 - **b**) the activity and activity coefficient of each component according to convention II, considering A the solvent.
 - c) Describe the system.

Data: $P_A^* (8^{\circ}C) = 112 \text{ mmHg}; P_B^* (23^{\circ}C) = 203 \text{ mmHg}; \Delta H_{vap} (A) = 330 \text{ cal} \cdot \text{mol}^{-1};$ $K_B = 361 \text{ mmHg}; R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Solución: a) $\gamma_{A,I} = 2.630$; $\gamma_{B,I} = 1.493$; **b**) $\gamma_{A,II} = 2.630$; $\gamma_{B,II} = 0.839$

- **24.**Two liquids A and B form non-ideal solutions. At 70 ° C, the vapour pressure of pure A is 280 mm Hg. and for pure B is 650 mm Hg at 30 °C. The total vapour pressure of a solution of 0.5 mole fraction is 500 mm Hg, at 30 ° C and the activity coefficient of B according convention I is 1.3; calculate:
 - a) The activity coefficient of A in this solution
 - **b**) The activity of both components
 - c) Draw the diagram of vapour pressure versus composition at 30 $^{\circ}$ C.

Data: $\Delta \overline{H}_{vap,A} = 4100 \text{ cal} \cdot \text{mol}^{-1}$

 $R = 0.082 \text{ } 1 \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ } \text{cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ } \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ **Solution:** a) $\gamma_{\text{I, A}} = 1.22$; b) a_{I, A} = 0.61; a_{I, B} = 0.65

x _A ^L	P (torr)	X _A ^v
1	500.0	1
0,985	499.6	0.9881
0,950	506.4	0.9615
0,925	517.4	0.9442
0.9	533.0	0.9287
0,875	552.7	0,9152
0.85	576.1	0.9037
0.75	696.9	0.8744

25. The table below show the total pressure and the composition of the solution and of the vapour at 25 $^{\circ}$ C:

Determine the activity and the activity coefficient of A and B for a solution with $x_A^L = 0.9$ according to the Convention I and II. **Data:** $P_B^* (25 \text{ }^\circ\text{C}) = 200 \text{ torr}$

Solution: a) $a_{I, A} = 0.9899$; $\gamma_{I, A} = 1.0999$; $a_{I, B} = 0.1900$; $\gamma_{I, B} = 1.9001$ **b)** $a_{II, A} = 0.9899$; $\gamma_{II, A} = 1.0999$; $a_{II, B} = 0.0950$; $\gamma_{II, B} = 0.9508$

- 26.At 35 ° C, the vapour pressures of chloroform and ethanol are 295.1 torr and 102.8 torr. At 35 ° C, a solution of chloroform and ethanol with X¹_{et} = 0,200 has a vapour pressure of 304.2 torr and the vapour has a composition X^v_{et} = 0,138. Calculate:
 a) γ_I and a_I of chloroform and ethanol in this solution.
 - **b**) $\mu_i \mu_i^*$, for each component of this solution.

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Solution: a) $\gamma_{I, chlor} = 1.11; \gamma_{I, etha} = 2.04; a_{I, chlor} = 0.888; a_{I, etha} = 0.408$ **b)** $\mu_{chlor} - \mu_{chlor}^* = -72.3505 \text{ cal} \cdot \text{mol}^{-1}; \mu_{etha} - \mu_{etha}^* = -548,1973 \text{ cal} \cdot \text{mol}^{-1}$

27.The following data refer to a mixture of equimolar amounts of two substances A and B, at 308.3 K:

 $P_{A} = 20,5 \text{ KN} \cdot \text{m}^{-2}$

 $P_{\rm B} = 15.5 \, {\rm KN} \cdot {\rm m}^{-2}$

Calculate:

- a) Indicate what kind of deviations respect to Raoult's law present each compound.
- **b**) Represent graphically the vapour pressures of A and B and the total vapour pressure as a function of the mole fraction of B. In the same graph represent the same magnitudes assuming ideal behaviour.
- **Data:** $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 $P_{A}^{*}(308.3 \text{ K}) = 49.5 \text{ K} \cdot \text{N} \cdot \text{m}^{-2}; P_{B}^{*}(308.3 \text{ K}) = 39.1 \text{ K} \cdot \text{N} \cdot \text{m}^{-2}$

Solution: $\gamma_{I,A} = 0.8282$; $\gamma_{I,B} = 0.7928 \implies$ negative deviations with respect to Raoult's law.

28.Given the following aqueous solution at 298 K:

- **a**) 0.01 M of CaCl₂
- **b**) 0.10 M of MgSO₄
- c) A mixture of $(NH_4)_2SO_4 0.5$ M with Urea 0.5 M

Calculate:

- 1) The ionic strength of each of the solutions.
- 2) The mean ionic activity coefficient in all solutions where possible, using the limiting law of Debye-Huckel.
- 3) What other method could be used to determine the $\gamma \pm ?$

Data: A = 0.51

Solution:

Im (CaCl₂) = 0.03; Im (MgSO₄) = 0.4; Im ((NH₄) ₂SO₄) = 1.5 **2**) γ_{\pm} (CaCl₂) = 0.66